Oracle BTree Index Internals:
Rebuilding The Truth

Objectives

A Dispel many myths associated with Oraciére
exes

INC
A Ex
A Ex
A Ex

0
0
0

ain how to investigate index internals
ain and prove how OraclelBee Indexes work
ain when index rebuilds might be appropria:

GO ELISNI ¢ |jdz2d S a

Aab20S GKIOd hNFYOES AYRS
level only in areas of the index where a massive
Insert has occurred, such that 99% of the index
has three levels, but the Index Is reported as
KI OA Yy 3 F2dzNJ £ SOSt ad &
comp.databases.oracle.server newsgroup post
dated 31st January 2003

AaLT G0KS AYRSE Of dza i S NA
rebuild may be beneficial@®on Burleson: Inside
Oracle Indexing dated December 2003 at
www.DBAzIine.com

GO ELISNI ¢ |jdz2d S a

AG¢CKS O0OAYINE KSAIKI AYONBIF asa Y
the fact that the range of values in the indexed columns is very
y | NNRiéhardiemiec Oracle Performance Tuning 1999.

Ada¢cKS AYRSE éxff,xwéAxyqrfryésé
Fa o6KSYy dzaAy3d asSldzsyOS ydzYoSN&A
will take longe€ Bichard Niemiec Tuning for the Advanced DBA;
Others will Require Oxygen 2001

AGecKAA GStfta dza | t20 lo2dzi AYFE

the index Is taking, what percentage of that is really being used anc
what space is unusable because of delete actions. Remember, that
when rows are deleted, the spaceisnotdea SR Ay 0KS
Wang: Resizing Your Indexes When Every Byte Counts at
www.DBAzine.com

G9ELISNI ¢ ljdz20Sa

ALYRSE RAIFAIN}IY aK2gAy3a |y adzyol
nodes to the right of the index structure having more levels than
leaf nodes to the left. Mike Hordila: Setting Up An Automated Index
Rebuilding System at otn.oracle.com

Aa5St SISR aLI OS Aa y2i NBOf I AYS
exact match key inserted. This leads to index broadening and
Increase in the indexes clustering factor. You need to reorganize to
reclaim white space. Generally rebuild index when the clustering
factor exceeds eight times the number of dirty blocks in the base
table, when the levels exceed two or when there are excessive
oNEzy y2RSa Ay (GUKS AYyRSEé¢E aAii
Seminar at www.tusc.com/oracle/download/author_aultm.htmi

Metalink Quote

Oracle Corporation as responsible as anyone.

For Example Metalink Note: 122008.1 states:

GwSo0dzAf R GKS AYRSE gKSyYY

- deleted entries rep“resent 20% or more of the current entries.
-0KS AYRSE RSLIWIK A& Y2NB 0KSYy

It then detalls a script that will basically automatically Validate
Structure all indexes in database that do not belong to SYS or
SYSTEM !

Classic Oracle Index Myths

5SS AYRSESa Ol y 0

A Oracle B NJ
over time and need to be rebuilt
A5Sf SGSR &aLJ OS

AY |y

time requires the index to be rebullt

ALF |y

S OKSa dE

AVRSE N

becomes inefficient and requires the index to be

rebuilt

A If an index has a poor clustering factor, the index
needs to be rebuilt

A To improve performance, rebuild indexes regularl

Introduction to BTree Indexes

A Oracle implements a form of B*Tree Index
Ah NJ O fTredlridex.is always balanced

A Index entries are always ordered

A An update consists of a deleted and a insert

A Leaf entries consist of the index value and
corresponding rowid

ALYRSE a0l ya dzaS WaS|c
(with the exception of Fast Full Index scan)

Oracle BTree Index

Root Block

Null- L1 Move- L4
Branch Blocks | BolancL2 Queert L5
Floydg L3 Zigoyg L6
ABBArowid Bolanrowid Floydrowid Move rowid Queenrowid Ziggyrowid
ACDCowid Bowierowid Kinksrowid Policerowid Reedrowid
Clashrowid Lennonrowid Poprowid Velvetrowid

Leaf Blocks

Treedump Trace Event

A Useful for determining current index structure

A Some earlier versions of Oracle can display a fi
block dump of each leaf block

At SNFSOUGfée KAIKEAIKI A
number of levels to all leaf blocks Is consistent

f9[9/ ¢ 202SOUPYAR Cwha RO ipdooliBeteddal -

Il [¢9w {9{{Lhb {9¢ 9+29b¢{ WAYYSRAL G°¢

- where 12345 is the index object id

Example of Treedump

----- begin tree dump

branch: 0x8405dde 138436062 (O: nrow: 3, level: 3)
branch: Oxdc11022 230756384 (nrow: 219, level: 2)
branch: 0x8405f15 138436373 (nrow: 138, level: 1)
leaf: 0x8405ddf 1384360631¢ nrow: 21 rrow: 21)
leaf: 0x8405de0 138436064 (0: nrow: 18 rrow: 13)
leaf: 0x8405de2 138436066 (1: nrow: 15 rrow: 15)

block type (branch or leaf) and corresponding rdba,

position within previous level block (starting &t except root starting at 0)
nrows. number of all index entries (including deleted entries)

rrows. number of current index entries

level: branch block level (leaf block implicitly 0)

Note: Treedump trace file created in the USER_DUMP_DEST

Myth: Index becomes unbalanced

A Common perception that Oracle Bee Indexes
pecome unbalanced over time

A However, height between root block and all leaf
plocks Isalways consistent

A Treedump can highlight this
A Explored further in index block split discussion

Block Dumps

A Oracle block dumps writes a formatted copy of :
nlock to a trace file

A Useful for investigating actual contents of a bloc
ALUQa 2yité | GaNBLINBaSsSy
complete or totally accurate

A Is poorly documented so meaning of values cair
be ambiguous or misleading

A Is not supported

Where To Find Block Detalls

ADBA SEGMENTS
I HEADER FILE
| HEADER BLOCK

ADBA EXTENTS

i EXTENT ID
i FILE_ID
i BLOCK_ ID

Both can be used to determine starting blocks of Index segments.
ASSM set to manual: Add 1 to BLOCK ID to find Root Block
ASSM set to auto: Add 3 to BLOCK ID to find Root Block (can var

Index Block Dump

To create formatted dumps of blocks:

ALTER SYSTEM DUMP DATAFILE 5 BLOCK 58;
ALTER SYSTEM DUMP DATBBLBECK MIN 58 BLOCK MAX 60;

To determine the data file and block from a rba:

SELECT DBMS_UTILITY.DATA BLOCK ADDRESS_FILE(13843€

DBMS_ UTILITY.DATA BLOCK ADDRESS BLOCK(138436069)
FROM dual;

Creates the dump file in user_background_dest

Block Header

Start dump data blocks tsn: 5 file#: 5 minblk 58 maxblk 58

buffer tsn: 5
seq: 0x0flg: Ox04tail: Oxec3c0601

Hex dump of block: st=0, typ found=1

Dump of memory from 0x084A0200 to 0x084A220

84A0200 0000 04010000 [......@.<.......]
84A0210 0000322C00000002 0000C846 0008EC39 [........ F...9..]

. relative database block address of the branch block (file no/block no)
. system change number of the block when last changed
seg number of block changes within current scn
tall: consists of last 2 bytes of scn, type and seq,
: block format (02 represents a post Oracle8 block format, A2 10g format)
checksum value
. 06¢ transactional data block type (table/index/cluster)
Hex dump of block: only displayed on later versions of Oracle

Block Header Continued

Block header dump: 0x0140003a
Object id on Block? Y
tc: 1 flg: - typ: 2- INDEX
fsl: 0 fnx: Ox0 ver: 0x01

Il Xid Uba Flag Lck Scn/Fsc
O0x01 Oxffff.000.00000000 0x00000000.0000.08 @ scn 0x0000.0008ec39

¢ object id
: commit/cleanout SCN
Ilc: Interested transaction count (defaults 1 branch block, 2 leaf blocks)
typ ¢ block type (2; index)
Itl ¢ Interested Transaction Location:
Itl: slot id,
Xid: transaction id,
Uba: undo block address,
Flag : state of current transaction (Committed)
Lck : number of locks help by current transaction
Scn/Fsc: scn /fsc of current transaction

Common Index Header Section

header address 139067972=0x84a0244
kdxcolev 1

KDXCOLEV Flags-=

kdxcolok O

kdxcoopc 0x80: opcode=0: iot flags3s converted=Y
kdxconco 2

kdxcosdc O

kdxconro 6

kdxcofbo 40=0x28

kdxcofeo 7957=0x1f15

kdxcoavs 7917

kdxcolev: index level (O represents leaf blocks)

kdxcolok: denotes whether structural block transaction is occurring

kdxcoopc: internal operation code

kdxconco: index column count

kdxcosdc: count of index structural changes involving block

kdxconro: number of index entries (does not include kdxbrlmc pointer)

kdxcofbo: offset to beginning of free space within block

kdxcofeo: offset to the end of free space (i.e.. first portion of block containing index data)
kdxcoavs: available space in block (effectively area between kdxcofbo and kdxcofeo)

Branch Header Section

kdxbrlimc 20971579=0x140003b
kdxbrsno O

kdxbrbksz 8060

kdxbr2urrc 13

kdxbrlmc: block address if index value is less than the first (row#0) value
kdxbrsno: last index entry to be modified
kdxbrbksz: size of usable block space

Leaf Header Section

kdxlespl O

kdxlende O

kdxlenxt 20971580=0x140003c
kdxleprv 0=0x0

kdxledsz O

kdxlebksz 8036

kdxlespl: bytes of uncommitted data at time of block split that have been cleaned out
kdxlende: number of deleted entries

kdxlenxt: pointer to the next leaf block in the index structure via corresponding rba
kdxleprv: pointer to the previous leaf block in the index structure via corresponding rbe

Kdxledsz: deleted space
kdxlebksz: usable block space (by default less than branch due to the additional ITL €

Branch Entries

row#0[8052] dba: 20971772=0x14000fc
col O; len 3; (3): c2 06 30
row#1[8044] dba: 20971773=0x14000fd
col O0; len 3; (3): c20b 51

Row number (starting at #0) followed by [starting location in block] followed by the dba
Column number (starting at 0) followed by column length followed by column value
Repeated for each indexed column

Repeated for each branch entry

Note: column value is abbreviated to smallest value that uniquely defines path

Leaf Entries (Unigue)

col 0; len 2; (2): c1 03

Row number (starting at #0) followed by [starting location within block]
followed by various flags (deletion flag, locking information etc.) followed by
total length of index entry followed by the rowid

Index column number (starting at 0) followed by column length followed by
column value

Repeated for each indexed column
Repeated for each index entry

Note: Total overhead is 3 bytes for each leaf index entry (unique index)

Leaf Entries (Notnique)

col 0;len 7; (7). 4143 43 4553 53 24
col 1; len 6; (6): 0140 00 Ob 00 1d

Row number (starting at 0) followed by [starting location within block] followed by variot
flags (deletion flag, etc locking information) followed by length of index entry

Index column number (starting at 0) followed by column length followed by column valu

Repeated for each indexed column with last column in-nomue index being the rowid of
iIndex entry (hence making the index entry effectively unique anyways)

Repeated for each index entry

Note: Total overhead is 4 bytes, 1 more than unique index

Why block dumps are useful

A Provide details of blocks for recovery purpose:
A Assists in studying impact of a change

A Useful in troubleshooting problems

A Assists in determining how Oracle works

Example: Delete index entry

SQL> CREATE TABLE test delete (id NUMBER, name VARCHARZ2(10));
Table created.

SQL> CREATE INDEX test_delete idx ON test_delete (name);

Index created.

SQL> INSERT INTO test_delete VALUES (1, 'BOWIE");

1 row created.

SQL> COMMIT,

Commit complete.

SQL> DELETE test delete WHERE id =1,

1 row updated.

SQL> SELECT file_id,block _id FROM dba_extents WHERE segment_name="TEST_D
FILE ID BLOCK ID

SQL> ALTER SYSTEM DUMP DATAFILE 5 BLOCK 3442;

System altered.

E

Note: add 1 to BLOCK ID else the segment header is dumpedA\BHi)

Delete Index Entry

Il Xid Uba Flag Lck Scn/Fsc
0x01 0x0000.000.00000000 0x00000000.0006-60 0O fsc 0x0000.00000000
Ox02 0x0008.024.0000075b 0x00804€29.0078:6b 1 fsc 0x0011.00000000
kdxlendel
kdxlenxt 0=0x0
kdxleprv 0=0x0
kdxledsz O
kdxlebksz 8036
row#0[8021] flag=--D--, lock: 2 len=15
col O; len 5; (5): 42 4f57 49 45
col 1; len 6; (6): 01 40 10 Oa 00 00

Itl slot number 2 shows that it has locked 1 row

kdxlende shows that 1 index row is being deleted

flag D shows that the index entry has been marked as deleted

lock:2 shows that the index entry has been locked by the transaction in Itl slot 2

Another Transaction Inserts Index Enti

Meanwhile, in other session, another transaction comes along ...

{v[DH Lb{9w¢ Lb¢h GSadyYyRStSiS
1 row created.

I+

1 [']9{ o

SQL> ALTER SYSTEM DUMP DATAFILE 5 BLOCK 3442;
System altered.

Index block dump of 2 transactions

Il Xid Uba Flag Lck Scn/Fsc
0x01 0x0000.000.00000000 0x00000000.0006-860 0 fsc 0x0000.00000000
0x02 0x0008.024.0000075b 0x00804e29.0078-6b 1 fsc 0x0011.00000000
0x03 0x0009.01b.00000762 0x00804d49.006a:6b 1 fsc 0x0000.00000000

kdxconro 2

kdxcofbo 40=0x28
kdxcofeo 7978=0x1f2a
kdxcoavs 7938
kdxlespl O

kdxlende 1

kdxlenxt 0=0x0
kdxleprv 0=0x0
kdxledsz O

kdxlebksz 8012

Another Itl slot is created for the second transaction, the first slot reserved for recursive S
kdxconro count is increment to 2
kdxlebksz remaining space is decreased by the size of the new Itl slot and new index ent

Index block dump of 2 transactions

row#0[7997] flag=--D--, lock: 2, len=15

col 0; len 5; (5): 42 4f 57 49 45

col 1; len 6; (6): 01 40 10 Oa 00 00
row#1[7979 flag: ------ , lock: 3 len=19

col 0; len 9; (9): 4d 41 4a 4f 52 20 54 4f 4d
col 1; len 6; (6): 01 40 10 0a 00 01

The first index entry is still marked as deleted
New index entry allocated next index row number (#1)

Offset of new index entry is calculated as being 7997 (offset of first index entry)
15 (length of first index entry) = 7978

New entry is locked by the transaction in ITL slot # 3

After the transactions commit

It Xid Uba Flag Lck Scn/Fsc
0x01 0x0000.000.00000000 0x00000000.0000-860 0O fsc 0x0000.00000000
0x02 0x0008.024.0000075b 0x00804e29.0078:0b 1 fsc 0x0011.0015a77c
0x03 0x0009.01b.00000762 0x00804d49.006a:0b 1 fsc 0x0000.0015a76f

kdxlende 1

kdxlenxt 0=0x0

kdxleprv 0=0x0

kdxledsz O

kdxlebksz 8012

row#0([7997] flag=--D--, lock: 2, len=15
col O; len 5; (5): 42 4f 57 49 45

col 1; len 6; (6): 01 40 10 Oa 00 00

col O; len 9; (9): 4d 41 4a 4f 52 20 54 4f 4d
col 1; len 6; (6): 01 40 10 0a 00 01

Itl Flags are set to U (Committed, Unclean)
The deleted index entry still remains and it not cleaned up (yet ...)

Update Of Index Entry

SQL> create table test_update (id number, name varchar2(10));
Table created.

SQL> create index test_update idx on test_update (name);
Index created.

SQL> insert into test_update values (1, 'BOWIE);

1 row created.

SQL> commit;

Commit complete.

SQL> update test_update set name = "ZIGGY' where id = 1,

1 row updated.

SQL> commit;

Commit complete.

SQL> select file_id, block_id from dba_extents where segment_name ='TEST_UPDAT
FILE ID BLOCK_ID

SQL> alter system dump datafile 5 block 3442;

System altered.

Block Dump After Update

kdxlespl O

kdxlende 1

kdxlenxt 0=0x0

kdxleprv 0=0x0

kdxledsz O

kdxlebksz 8036
row#0[8021]flag:---D--, lock: 2, len=15
col 0; len 5; (5): 42 4f 57 49 45

col 1; len 6; (6): 01 40 0d 6a 00 00

col 0; len 5; (5): 5a49 47 47 59
col 1; len 6; (6): 01 40 0d 6a 00 00

kdxlende shows that one index entry has been deleted
Previous index entry remains but marked as deleted

A new index entry is inserted

Both entries locked by the update transaction in ITL #2

Basically, an UPDATE index operation consists of a DELETE and an INSERT

Index Statistics

ADBA INDEXES
AINDEX_STATS

AINDEX HISTOGRAMS
AV$SEGMENT STATISTICS

DBA INDEXES Statistics

A Statistics columns populated by:
I DBMS_ STATS package (preferred)
I ANALYZE command

A BLEVElHeight of index between root block and leaf pages
(0O means there is only a root block)

A LEAF BLOCHK®umber of leaf blocks in index
A DISTINCT KEY&imber of distinct index values

A AVG LEAF BLOCKS PERAKE&rdge number of leaf
blocks required to store an indexed value.

A AVG DATA BLOCKS PER AvEMge number of table
blocks that contain rows referenced by indexed key value

A NUM_ROWSNumber of leaf row entries

A CLUSTERING FACTI@ditcates how well ordered the rows
In the table are In relation to the index

VSINDEX STATS

A Populated by ANALYZE ... VALIDATE STRUCTURE command
A Only stores details of last index analyzed

A HEIGHTHeight of index, beginning at 1 for root only index

A BLOCK3Number of blocks allocated to the index, not necessarily use
A LF_ROWSNumber of leaf row entries, including deleted row entries
A LF BLK®Number of leaf blocks, including empty leaf blocks

A LF_ROWS LETbtal size of all leaf row entries, including overhead
and deleted entries

A LF BLK LENotal usable space in all leaf blocks

A BR_ROWNumber of branch row entries

A BR_BLK®umber of branch blocks

A BR_ROWS LETotal size of all branch row entries, including overhez
A BR BLK LENotal usable space in all branch blocks

VSINDEX STATS

A DEL _LF ROWSumber of deleted leaf row entries not yet cleaned out

A DEL LF ROWS [Hbtal size of all deleted leaf row entries not yet
cleaned out

A DISTINCT KEYmber of distinct index entries, including deleted entrie

A MOST_ REPEATED :Kih¥ number of key entries for the most repeated
index value

A BTREE_SPAQdBtal size of the entire index, including deleted entries

A USED _ SPACHtal space currently used (not free) within the index,
including deleted entries

A PCT _USEPercentage of space currently used (not free) within the inde
including deleted entries

A ROWS PER_KRYerage number of leaf row entries per distinct key valr

A BLKS GETS PER_AC@&Efage number of block reads required to
access specific index entry (the fewer rows_per_key and the lower the
the lower this value). EG: For a unique index with a HEIGHT of 3, this \
would be 4 (3 for the index block reads and one for the table block reac

Statistic Notes

A BLEVE(dba_indexes) v${EIGHTindex_stats)

A BLOCKS&llocated, not necessarijet used

A LF ROWS LHM¢lusive of row overheadsnd rowid

A PCT USE@mount of space currently usedthin index
(USED SPACE/BTREE_SPHIDE)*
Note: iIndexwide average

A Mostindex stats are inclusive of deletedtries:
I non-deletedrows =LF ROWE&DEL LF ROWS

I pct_usedby nondeleted rows {(USED SPAGCE
DEL LF ROWS LEN)/BTREE_SPAIOE)

Clustering Factor

A Vital statistic used by°BO to determine cost of index access
A Determinesthe relative order of théable in relation tothe index

A CFvalue corresponds to likely physical 1/0sbtwcks visited
qluring)j a full index scan (note same block ccagdvisitedmany
times

A If the same block is read consecutively th@racle assumesnly
the 1 physical 1/0 is necessary

A Thebetter the CF, the more efficient the accessthia
correspondingndex as less physical I/Os are likely

AD22R¢ [/ C IASYSNIrfte KlIFa @I fec
Ad R¢ / C ASYSNIftfte Ktadle I QI ¢

How does Oracle Calculate CF

A Performs a full index scan (or estimate thereof

A Examines each rowid value to determine if
specific block referenced is the same block as
the previous rowid

A If it differs, the CF is incremented by 1

A At the end of the scan, the final tally becomes
the CF of the index

Problems with this strategy

A One value determine CF for entire index when CF
may vary:.
I For different parts of the table
I For different index values
A52S3ayQu OFUGSNI F2NJ AYRS
GaNBOSyiafeée | O0OSaaSReé of
I E.g.. 100 rows could be spread across 2 blocks yet tht
CF may be calculated as being 100

A Therefore CF can appear to be much worse than
reality and not really generate estimated PIOs

Index with perfect CF

N

Index with poor C

Table Blocks

Richard Foote Index Internals

with good clustering
poor Clustering Factor

Table Blocks

Richard Foote Index Internals

Clustering Factor: How it can be
Impacted

A Index clustering is improved when data is
Inserted In the same order as index

A Therefore anything that impacts this ordering
can impact the clustering factor of an index

I Column order in index

I Reverse Indexes

I Freelists / Freelist Groups

I Automatic Segment Space Management

Good Clustering Factor Exampl

€

SQL> CREATE TABLE cf test AS SELECT * FROM db&i<e8Y table name

Table created.

SQL> CREATE INDEX cf_test_i ON cfalbést(hams;

Index created.

fv[BH 9:-9/ RovYaypaldl daodar aOKSNWGlof Swaudl :

estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SI:
PL/SQL procedure successfully completed.
SQL> SELECT t.table _name, i.index_name, t.blocks, t.num_rows, i.clustering_fac

2 FROM user_tables t, user_indexes i
3 WHERE t.table name = i.table_name AND i.index_name='CF_TEST I’

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FA(

for

CTO

CF_TEST CF TEST | 46 1705 46

a! OSNJ dSe [t dza
A A table can only be well ordered in one way
A Therefore another index will likely not have as good a Clusté@aajor

V 4 ’\
nnm

SQL> CREATE INDEX cf _test bad i ON cfutastowsg;

Index created.

{v[BH 9-9/ RoOoYawpaldlGaodalr iKSNWYAYRSEpadG!I G4d

estimate_percent=> null);
PL/SQL procedure successfully completed.

SQL> SELECT t.table name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table name = i.table_name AND i.index_name='CF_TEST BAD I

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTO

R

CF_TEST CF_TEST _BAD_ |52 1705 432

CFc Column Order

A Clearly some columns will have a better CF
than other columns

A Therefore, with a concatenated index, it
makes sense that the index column order will
Impact CF of index

A The CF of columns worthy of consideration
when determining index column ordering if all
columns are likely to be referenced

CFc Column Order

SQL> CREATE TABLE cf test AS SELECT * FROM db&DatiteBY table name

Table created.

SQL> CREATE INDEX cf _test good i ON ¢chltestGame, num_rows

Index created.

{v[DH 9-9/ RoYayadl dao3al GKSNYGlotSypadld
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE :
PL/SQL procedure successfully completed.

SQL> SELECT t.table name, i.index_name, t.blocks, t.num_rows, i.clustering_factor

2 FROM user tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST _GOOD I

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACT

CF_TEST CF_TEST GOOD46 1705 46

CFc Column Order

SQL> CREATE INDEX cf _test bad i1 ON cfutestows, table namg

Index created.

{v[H 9-9/ RovYagpadlldaoalr GKSNypyalof Sypadl
estimate _percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE :
PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor

2 FROM user tables t, user _indexes i i 1
0 2 1 9w9 GGl oftSyYylrYS I APGlIot SpuylyYS I

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTC

CF_TEST CF_TEST BAD 46 1705 459

This index has a clearly worse Clustering Factor due to the average CF of the leading c«

CK Reverse Key Index

A Reverse key indexes are designed to redistribut
Index values across the index structure

A They avoid contention issues, particularly in RA
environments

A But what impact do they have on the Clustering
Factor of indexes ...

CK Reverse Key Index

SQL> CREATE INDEX cf test reverse | ON cf test(table RitanieiSE
Index created.

fv[BH 9-9/ RovYagpadldaoalr GKSNypalof Spadl d
estimate percent=> null, cascade=> true, method _opt=>'FOR ALL COLUMNS SIZE 1

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table _name = i.table_name AND i.index_name='CF_TEST_REVERSE |

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_F

CF_TEST CF_REVERSE_TEST | 46 1706 1303

The REVERSE index has taken an excellent Clustering Factor (52) and turned it into a
dreadful one (1303)

CF Freelists / Freelist Groups

A Freelists and Freelist Groups are also purposel
designed to avoid block contention by
distributing different sessions to different blocks
during insert operations

A Will hopefully reduce contention related waits
such as buffer busy waits

A But what about the impact on the clustering
factor of indexes ...

Impact on CF of Freelists

In this example, create a simple procedure that inserts sequenced rows into a table wit
segment space management set to manual

SQL> CREATE TABLE cf testl (id NUMBER, insert_date DATE);
Table created.

SQL> CREATE SEQUENCE cf testl seq ORDER;

Seguence created.

SQL> CREATE OR REPLACE PROCEDURE cf_testl _proc AS
2 BEGIN
FOR i IN 1..100000 LOOP
INSERT INTO cf_testl VALUES (cf _testl seq.NEXTVAL, SYSDATE);
COMMIT;
END LOOP;
END;
/

c0O~NO O1 bW

In (say) 3 separate sessions, exec cf _testl proc concurrently

Impact on CF of Freelists

SQL> CREATE INDEX cf_testl i ON cf_test1(id);

Index created.

SQL> EXEC dbms_stats.gather_table stats(ownname=>'BOWIE', tabname=>'CF_TES
estimate _percent=> null, cascade=> true, method opt=>'FOR ALL COLUMNS SIZE|1'

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user _tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TESTL1 I

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_RA

CF_TESTS CF_TESTS_| 744 300000 875

Note the CF is pretty good with it being much closer to the BLOCKS value than NUM_RO!

Impact on CF of Freelists

Similar example as before but this time create table with freelists ...

SQL> CREATE TABLE cf _test2 (id NUMBER, insert_date DATE) STORAGE (FREELI:
Table created.

SQL> CREATE SEQUENCE cf test2 seq ORDER,;
Sequence created.

SQL> CREATE OR REPLACE PROCEDURE cf test2 proc AS
2 BEGIN
3 FORIIN 1..100000 LOOP

4 INSERT INTO cf_test2 VALUES (cf_test2_seq.NEXTVAL, SYSDATE):
5 COMMIT:

6 END LOOP:

7 END:

8 /

Again, In (say) 3 separate sessions, exec cf test2 proc

Impact on CF of Freelists

SQL> CREATE INDEX cf_test2_i1 ON cf_test2(id);

Index created.

SQL> EXEC dbms_stats.gather_table stats(ownname=>'BOWIE', tabname=>'CF| TI
estimate percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST2_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_F

CF_TEST?2 CF_TEST2 | 749 300000 237402

Freelists avoided contention issues but now we are left with an index with a much worse

Note: Actual CF value will vary depending on freelists and whether session Process IDs
I FTNBStAAOD {2YS OSNBRA2YAa 2F hN}OfS 2y

CH ASSM

A Automatic Segment Space Management
performs the same function as FREELISTS ar
-REELIST GROUPS

A It helps prevent contention by spreading
Insert load across different blocks

A Again, addresses contention issues but at
what cost to the Clustering Factor ...

